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Equilibrium shape and stability of a liquid cylinder 
in cross flow at low Weber numbers 

By D. WEZHS A N D  I. FRANKEL 
Department of Aeronautical Engineering, 

Technion-Israel Institute of Technology, Haifa, Israel 

(Reoeived 18 November 1980 and in revised form 8 August 1981) 

The cross-section shape and stability of a liquid cylinder moving perpendicularly to 
its axis in a gaseous medium is studied. Such liquid cylinders are formed during the 
break-up process of thin, rapidly moving liquid sheets, appearing in spray and 
atomization processes. The equilibrium shape is affected mainly by two factors: the 
dynamic-pressure distribution in the gas flow and the surface tension on the liquid 
boundary. The former tends to distort the liquid cross-section into an oval shape while 
the latter tends to restore the circular cross-section. 

A series expansion for the shape of the cylinder cross-section was determined by 
assuming incompressible potential flow, neglecting the effects of body forces and 
internal circulation in the liquid. 

The stability analysis shows that in the range of low Weber numbers the cylinder 
break-up is due to the divergence of varicose perturbations. The wavenumber of the 
most rapidly growing perturbation, its rate of growth and the maximal wavenumber 
for which varicose instability occurs, are all found to decrease as the Weber number 
grows, owing to a pressure distribution caused by the varicose distortion, which tends 
to reduce these perturbations. 

1. Introduction 
Spray and atomization processes appear in a variety of fields, including painting, 

fire-fighting, combustion, agriculture and aerosol production, among others. A common 
technique for producing such sprays is by formation of thin, rapidly moving liquid 
sheets by injection of the liquid through certain nozzle types (fan spray etc.) or by 
collision of liquid jets. Under appropriate conditions these sheets disintegrate owing 
to  aerodynamic instability, causing atomization and droplet formation. 

According to the commonly accepted (Brodkey 1967) model of the disintegration 
process (Dombrowski & Johns 1963), a wavy perturbation of the sheet builds up, 
giving it the typical form of a ‘waving flag’ (see figure 1) .  The amplitude of this 
perturbation grows, and when it reaches a critical value the sheet is torn transversely 
into ligaments. These liquid ligaments quickly contract into cylindrical segments 
through the action of surface tension. The cylinders then continue moving broadside 
and undergo a varicose type of break-up process. 

The first phase of the sheet break-up process has been extensively studied by Squire 
(1953)) Hagerty & Shea (1956), Dombrowski and various coworkers (Dombrowski, 
Hasson & Ward 1960; Dombrowski & Hooper 1962; Fraser et al. 1962; 
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FIGURE 1.  The Dombrowski & Johns (1963) model for liquid-sheet break-up 
and atomization. 

Dombrowski & Johns 1963; Clark & Dombrowski 1972; Crapper, Dombrowski, 
Jepson & Pyott 1975; Crapper, Dombrowski & Pyott 1975), Weihs (1978), and 
others. 

For the second phase of the disintegration process, i.e. from the formation of the 
cylinders to their break-up into drops, Rayleigh’s classical solution for the break-up 
of a non-moving liquid cylinder under the action of surface tension has usually been 
adopted. (Fraser et al. 1962; Dombrowski & Hooper 1962; Dombrowski & Johns 1963; 
etc.). Thus, previous investigations have essentially ignored the effect of relative 
motion of the surrounding atmosphere on the stability of the liquid cylinder. 

The stability of a liquid jet moving along its axis has been extensively investigated 
(Levich 1962; Sterling & Sleicher 1975; Anno 1977; Bogy 1979; and others). These 
studies modified and extended the classic solutions of Rayleigh (1894) and Weber 
(1931) to include nonlinear effects, inertia and viscosity of the liquid and gas, the 
influence of surfactants etc., and to cover a wider range of flow parameters (jet 
velocities etc.). However, the effect of crow flow on the jet has not been examined. This 
cross-flow effect, while appearing mainly in spray jets, can also occur when ink-jet 
nozzles (Bogy 1979) perform a sideways or rotating motion. 

The purpose of the present paper is thus to study the equilibrium cross-section and 
stability of a liquid cylinder moving perpendicularly to its axis in a gaseous medium. 

2. Formulation of the problem 
The two main factors affecting the equilibrium shape of the cylinder cross-section 

are the dynamic-pressure distribution in the surrounding flowing gas and the surface 
tension on the gas-liquid boundary. 

The pressure distribution tends to compress the cylinder in the direction of the 
motion and stretch it in the perpendicular direction. Thus the cross-section is dis- 
torted into an oblate shape (see figure 2).  It is easily seen that the greater the distortion 
the more the pressure distribution tends to increase it. 

On the other hand, the distortion just described changes the local curvature of the 
gas-liquid boundary in a manner which increases curvature and surface tension on 
the diameter perpendicular to the gas flow and decreases them on the diameter in the 
direction of the mot,ion. Thus the surface tension act,s to balance the dynamic-pressure 
effects. 
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FIGURE 2. Schematic description of equilibrium cross-section shape of a liquid cylinder subjected 
to a cross flow of speed U ,  and the oo-ordinate system. (The figure actually shows the calcula,ted 
shape for W = 0.3.) 

The possible influence of several other factors have been omitted in order to facilitate 
the present solution. 

(1) Taking cases where the flow Reynolds number Re = 2pg Ua,,/,u, % 1 where pB 
is the gas density, ,us the gas viscosity, U the flow velocity and a, the equivalent 
radius (the radius of a circular cylinder with the same cross-sectional area), because 
typical spray velocities are O( 10 m/s) and cylinder diameters are up to O( m), 
the influence of the shear stress on the gas-liquid boundary is neglected relative to 
the dynamic pressure. The flow is then taken to be potential. 

As a result, flow separation and its possible effects on the pressure distribution are 
neglected. (For an approximate analysis of the effects of separation on the cross- 
section shape, see the appendix.) 

(2) Internal circulation in the cylinder is neglected. While no experimental evidence 
for the flow in cylinders of the size mentioned above was found, spherical droplets of 
this size range under comparable conditions (Re > 100, W < 0.16) have been shown 
experimentally and numerically (Pruppacher & Pitter 1971; LeClair et al. 1972) to 
have negligible internal circulation. 

(3) The influence of gravitation on the pressure inside the liquid is negligible com- 
pared with the influence of surface tension provided that the Bond number 

where p1 is the liquid density, g is the gravitational acceleration and 6 is the coefficient 
of surface tension. Experimental data for fan-spray jets (Dombrowski & Johns 1963; 
Tanasawa, Sasaki & Nagai 1957) indicate that B = O(10-3). 

(4) The velocities commonly encountered in the disintegration processes mentioned 
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in  8 1 are usually of M c 0.1, where M is the Mach number, so that the gas is assumed 
incompressible. 

( 5 )  The longitudinal curvature of the cylinder (figure 1) is neglected, as the radius 
of curvature is very much larger than the cylinder equivalent radius. 

(6) Experimental evidence (Dombrowski &Johns 1963; etc.), as well asa  calculation 
based on the accelerations due to surface tension causing the contraction of the broken 
sheet into a cylinder (figure l), indicate that this contraction has a time scale of two 
orders of magnitude less than the break-up time. Thus the equilibrium shape can be 
viewed as a steady state, although it was rather violently formed. Any residual 
vibrations can also be seen as part of the perturbations that eventually cause 
instability and break-up of the cylinder. 

. 

3. Analysis of equilibrium shape 
The equilibrium cross-section shape is thus assumed to be the result of the balance 

of surface tension and dynamic pressure distribution only, as a result of the previous 
simplifications. Therefore, the equilibrium condition for pressure at the interface is 

where pa is the external pressure on the cylinder surface, R is the local radius of cur- 
vature of the gas-liquid interface and E is the pressure in the liquid. (As a result of 
neglecting body forces and internal circulation, we may conclude that the liquid 
pressure is uniform in the equilibrium state.) 

We now look for the shape r = a(8) for which the equilibrium condition (1) is ful- 
filled (r,  B are polar co-ordinates according to figure 2 ) .  I n  spite of the simplifications 
made so far, the solution of the problem in hand is still rather complicated, as the 
pressure distribution is coupled with the cylinder cross-section shape a(0). Further- 
more, the dependence of the pressure distribution on the velocity distribution (via 
Bernoulli’s law) and the expression for the curvature are both nonlinear. 

I n  order to overcome these difficulties we further limit ourselves to  cases where the 
Weber number W = pg Uza,/& -g 1, so that the equilibrium cross-section is described 
by slight deviations from the circular shape appearing when W = 0. The cylinder 
shape a(6)  and the velocity potential $(r ,  0) of the gas flow can then be written as 

$(r,  8 )  = $,(r, 8 )  + W$& 8) + W2$,(r, 0) + . . . , (3) 

where $, is the velocity potential of the flow field exterior to a circular cylinder of 
radius a,. 

The pressure in the gas flow about the cylindrical surface is given from Bernoulli’s 
law, to first order in $, as 
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where Po is the gas-flow stagnation pressure, This is, upon substitution of the explicit 
form of the potential to first order, 

Substitution in the expression for the curvature in polar co-ordinates leads to 

(6) 
1 1  
R - a, 
- - [ 1 - Wf1(8) - W-;(e)]. 

Inserting ( 5 )  and (6) into (1) and rearranging, we obtain 

(7) 
E - Po Wf;(8)+Wfl(8) = 1 ---2Wsin28. 
W O  

A particular solution of (7) is 

(8) 

and the general solution vanishes identically owing to the requirement of symmetry 
around 8 = 0, tn. 

The value of the constant E is obtained by applying the definition of a, as the 
equivalent radius of the cylinder. The cylinder cross-section area is given by: 

E-Po 
Wf,(8) = 1 -- - W (  1 + 6 COP 2 4 ,  

&/a0 

Substitution of (8) gives, after integration, 

s 
a0 

E = - (1 - W )  +Po, 

and thus the cross section shape is given, to first order, by 

.(1)(8) = ao( 1 - Q W cos 28). 

We now find q51(r, 8) ,  the first perturbation of the gas-flow velocity potential. The 
kinematic boundary condition on the cylinder boundary is (V$ . ii), = 0, where ii is 
the local normal to the interface, in polar co-ordinates. 

Substitution of (3) and (13) leads to 

(2) = u(~cost?-cos38). 
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FIGURE 3. Calculated deviations from circularity of the cross-section, comparing calculation8 
by means of the first-order solution (13) (- - -) and the second-order solution (16) (-), 

We now seek a that satisfies Laplace's equation V2#, = 0 in the region r > a(@, 
--z 0 as r += 00. By separation of variables and the boundary conditions (14) and 

and applying the condition of symmetry around 0 = 0 and (14), this is 

#1 = - +ua, COB e - (2)sc0s 381. (15) 
L ,  \ '  I J 

A second-order solution is now constructed in a similar fashion, by retaining terms 
I _  n I ~ i r 9 \  . 1 1 * L 1 . P  1 1 1 1. , A " ,  1 I .  c\ rn, 1 .  up GU ~ ( Y Y - )  ana applying me nrsc-oraer soiucions (16) ana (191. i n e  cross-seccion 

shape is 

and the perturbation potential is 

(16) 2: a,[i - p v  c ~ ~ 2 e - i ~ ~ w ~ ~ 5 + ~ o c ~ s 2 e -  i4cos4e )~ ,  

Typical cross-section shapes appear in figure 3, which shows a(l)(B)/u,, d2)(e)/a, in 
the range 0 < 0 < in for values of W = 0.156,0.263. (The description in the first 
quadrant is sufficient, since the solution is symmetric about 6' = 0, in.) 



Shape and stability of a liquid cylinder in crossJlow 399 

A-A 

FIGURE 4. Co-ordinates and form of diverging perturbations. 

The fineness ratio h, defined as h = a(O)/a(&r), gives a convenient measure of the 
'total' distortion of the cross-section. From (13) and (16) we see that 

Various tests on the range of Weber numbers for which the first and second approxi- 
mations to the shape and pressure are applicable have been made (Frankel 1980). 
These include the relative changes in calculated maximal distortion, and in the 
average distortion, as well as the fineness ratio above. These lead to the expected 
result, that u(1)(0) is a good description for W c 0.3, while a(2)(S) probably is reliable 
to W N 0-5. 

4. Stability analysis 
The stability of the liquid cylinder is analysed by assuming small perturbations of 

the equilibrium state established in $3.  Let the form of the perturbed cylinder be 
given by 

b = a(@(l+r),  (19) 

where r = a(8) is the equilibrium cross-section shape (16) and 7 is a small perturbation 
of the general form = ro(8) eflt+ikg. /3 is the growth rate, k the wavenumber, t is the 
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time and r ,  8, z the cylindrical co-ordinate system (see figure 4). We represent the gas 
velocity potential @ by 

where q5 is, from (3), (15) and (17), 
@ = w, 0 )  + 2(r ,  e , z ,  t ) ,  (20) 

and is the perturbation potential, which is presumably O(q). 
The kinematic boundary condition on the perturbed gas-liquid interface is: 

where ar, 0*, Bz are the velocity components. 

matic boundary condition in the equilibrium state 
Substituting (16) and (19)-(21), neglecting terms O(q2) and subtracting the kine- 

we obtain 

a7 + gW(2 cos 0-T COB 28- 8 cos 38)] + 2U(sin 8-  gw sin 30) -, (24) ae where r = pao/ 77. 
In order to find a f that satisfies Laplace's equation V2p = 0 in the region r 3 b 

and the boundary condition (24), we represent it as the sum 2 = f I  + 211, where f I  

satisfies the boundary condition 

and fII/fI = O(W). (The appropriate boundary condition for pI1 may be constructed 
easily by substituting the expression found for f I  in (24).) 

By separation of variables and substitution into the boundary condition together 
with the series expression for T o ( @ ,  

(26) 
co 

qo(e) = qo (Ao + x A ,  cos me + B, sin 
p n = l  

neglecting higher-order terms we arrive at 

which sat'isfies the requirement 2 +. 0 as r -+ co. 
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[ = ka, is the non-dimensional wavenumber and K ,  is the modified Bessel function 
of the second kind and order n. 

In addition to the set of assumptions underlying the solution of the equilibrium state, 
we further neglect the influence of liquid viscosity on the stability. According to Weber 
(1931) this additional assumption is justified provided that ,ul(2plSa0)-~ 1, where 
p1 is the liquid viscosity and pl is the liquid density. Most practical cases of spraying 
or industrial processes satisfy this condition, so that this assumption does not add 
any new restrictions on applicability. Thus one can write a potential for the liquid 
phase. The perturbation potential within the liquid, x, should satisfy the kinematic 
boundary condition (analogous to ( 2 4 ) )  

By a similar procedure to that described above ( (24 ) - (27 ) ) ,  and using appropriate 
recurrence relations, we find a x that satisfies Laplace's equation V2x = 0 in the 
region 0 < r < b and is bounded for r = 0. 

The gas-pressure distribution pb on the perturbed interface is given by Bernoulli's 
law: 

where 4 is the local gas speed. pb may be written as a sum p a + & , ,  where p a  is the 
gas pressure on the interface in the unperturbed state and p b  is the gas-pressure 
perturbation. 

Substituting (16), (19)-(21), (26) and (27) in (29) and subtracting the equation 

that results from the unperturbed state, we obtain an expression for $b* 

In  a similar manner 

wherep, is the pressure perturbation within the liquid cylinder. (The dynamic-pressure 
term is omitted since it is O ( r 2 ) . )  

According to (19) the equation of the interface may be written as 

H ( r , O , z )  = r - a ( O ) ( l + q )  = 0, 

1 1  V H  
and thus 

-+- = div - 
R, R2 PHI ' 

where R,, R, are the principal radii of curvature. 
The equilibrium condition on the perturbed gas liquid interface is: 

By substitution of the explicit forms of (29) and (31), and the radii of curvature, 
and neglecting terms O( W 2 r )  relative to O( WT), (32) can be written as a sum of orthog- 
onal disturbance modes. 



402 D .  Weihs and I .  Prankel 

The orthogonality properties of the trigonometric functions result in the require- 
ment that each of the coefficients of cosl8(1= 0,1,. . .) or sin ZO(2 = 1 , 2 , .  . .) in (32) 
vanish separately. This requirement yields a set of equations for the coefficients A ,  
and another very similar set of equations for the coefficients B,.t 

For1 = 0 

For 1 = 1 
(a,,-?~)A,+y'fa,,A,+ W(a,,+a,,7~)Az = 0. (33) 

yTalOAO+ [a1,-?'(1 + Wa11)]A,+y?a1ZAzf W(a13+a13T2)A3 = 0. (34) 

For 1 = 2 

W ( a , , + ~ z , ? 2 ) A o + y ~ ~ z , A , +  (a,,-T2)Az+y?az,A3f W(az4+0124?2) A4 = 

(35) 
For 13 3 

w(u,,l.-z + q J - 2 T Z )  A&, + y?q,,-,A&, + (all- T 2 )  A,  

+7%,l,lA,,,+ W(at,,,z+at,,+2?2) 4 + 2  = 0, (36) 
where 

Taking the first n rows, excluding the last term in the (n- 1)th row and the last 
two terms in the nth row, we arrive at a homogeneous set of n equations in the n 
unknowns A,, A,, . . . , A,-,. This leads to the formulation of the problem of the deter- 
mination of 52 as an eigenvalue problem: nontrivial solutions will exist for eigenvalues 
that fulfil the characteristic equation (37), (p. 403). 

When W $. 0 it can be shown by some rather lengthy algebraic manipulation 
(Frankel 1980) that 

), 

(38a) 

where I,, K ,  are the modified Bessel functions of argument (, when terms O( W z )  or 
higher are omitted. 

If W = 0, all the non-diagonal elements are identically zero, and we retrieve 

- (4 r)" = aZl = - ( 1 - [ 2 - 1 2 ) ,  
4 

which is Rayleigh's solution. 

?: is approximately 

i.e. the components of cos k8, k + 1, in q, are O( W) or higher. 

and previous steps may be obtained directly from the authors. 

The perturbation form (eigenvector) associated with the growth rate (eigenvalue) 

ql N qOePt+ikz[cos 18 + O( W)] (1 = 0, 1, . . .), (39) 

t The explicit expressions for the coefficients ait, air, further details of the series form of (32) 
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FIGURE 5 Square of non-dimensional temporal growth rate of diverging perturbations vs. 

non-dimensional wavenumber of perturbation. Parameter is Weber number. 

The set of equations for B,, the coefficients of the sine functions in ( 3 2 ) ,  is very 
similar to the set for the coefficients A,. They yield the same eigenvalues T;, with the 
only difference being that for 1 = 1 

The eigenvectors are now 

rl v r0e8t+i”[sinZ8+O(W)] (1 = 1,2,  ...). (41) 

For any perturbation to lead to instability, the square of its non-dimensional growth 
rate ;il” as given by (38), (40) must be positive. 

For 1 = 2 , 3 ,  ..., since [Ii/I, > 0 for all 6 > 0,  the sign of 7; is determined by the 
expression in brackets on the right-hand side of (38 a). For all f ;  3 0 K,/[K is negative, 
monotonically increasing, and tends asymptotically to zero for f; --f co. Thus the 
highest value of T; is for [ -+ 0:  7T; = - I(1- 1)  ( I  + 1 - 2 W). For these perturbations to 
lead to instabilities: W > *(Z+ 1) .  We can conclude that these forms are not involved 
in the break-up process of the liquid cylinder in the region of low Weber numbers 
( W  < 1)  we are dealing with. 

For 1 = 1;  the expressions for T;, ( 3 8 b )  and (40), lead to the same conclusion, i.e. 
that these forms are also non-divergent when the Weber number is smaller than unity. 

The only perturbation which causes instability is thus the ‘ varicose ’ one given by 

(42) 7 = r o e P t + i k z  [ I  +O(W)I,  



Shape and stability of a liquid cylinder in cross flow 405 

0.7 

0.65 

2 0.6 

0.55 

0.5 

W 
FIGURE 6. Non-dimensional wavenumber of varicose perturbation of maximum 

growth rate as. Weber number. 

for which: 

Figure 5 shows the dependence of ;it on the non-dimensional wavenumber for several 
values of W .  Increasing the Weber number is seen to decrease the growth rate of the 
varicose perturbations. The maximal wavenumber for which the perturbations diverge 
and t,,,, the wavenumber of the perturbation which has maximum growth rate are 
decreased as well. 

The variation of Em with W appears in figure 6. (m is seen t'o decrease nearly linearly 
with the Weber number up to W 'v 0.3. 

5. Discussion 
The variation of the characteristics of the varicose perturbation with the Weber 

number as shown in figures 5 and 6 may be accounted for through the identification 
of the origin of the terms in T i  (equat.ion (43)) that include W .  Thus we find that the 
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perturbation of the pressure distribution in the gas flow includes a term 

due to the varicose perturbation of the liquid cylinder. This appears in the expression 
for ?f as - 2W( 1 + K,/tK;). 

For all t; 2 0,  1 + K,/(K; > 0. Thus there is an increase in gas pressure where the 
cylinder ‘swells’ (7 > 0)  while the gas pressure decreases where the liquid cylinder 
narrows (7 < 0) .  Thus a pressure distribution forms that opposes the development 
of the varicose perturbations; this explains the decrease of the value of ?t with the 
increase in W. These changes in pressure distribution become physically clear if we 
visualize the three-dimensional gas flow about the perturbed liquid cylinder. 

Once the cylinder has started to distort owing to a varicose perturbation, it becomes 
‘easier’ for the flow to move past the constricted sections, causing higher velocity 
there, and thus the predicted lower pressure is produced. The pressures are thus higher 
at the expanded sections and this three-dimensional flow field tends to stabilize the 
cylinder, causing the reduction in 71. 

Furthermore, since 1 + K,/CKi is monotonically increasing there is higher resistance 
against the divergence of varicose perturbations the higher the value of 5. Conse- 
quently, the limiting wavenumber for divergence and the wavenumber of maximum 
growth rate are both reduced with increasing the Weber number. 

The present linear solution cannot be expected to describe the actual break-up of 
the cylinder reliably. Nevertheless, it is a commonly accepted assumption that the 
perturbation of maximum growth rate in the ‘linear’ range of small perturbations 
penetrates the ‘nonlinear’ range and dominates the actual break-up. Thus we expect 
the liquid cylinder to be destabilized and broken up by the varicose perturbations of 
wavenumber Cm. Assuming that one drop is formed from each segment of one wave- 
length (neglecting the influence of the satellite droplets, which include up to 4 yo of 
the mass (Bogy 1979)), we obtain by mass conservation 

where co is the drop radius. 
As we have noted above, figure 

to W N 0.3. This dependence may 

5 m  ~ . 

6 shows t m  to  decrease nearly linearly with W up 
be approximated by 

- N - 1-0.43W (0 < W < 0.3)’ 
5 m 0  

(45) 

where t m o  = 0.697 is the value of t m  for the case W = 0 (Rayleigh’s solution). Sub- 
stituting (45) we obtain 

where 

5 a0 N ~ ) 0 ( 1 + 0 . 1 4 W )  (0 < W < 0-3)’ 

is the ratio of the radii for M7 = 0. 
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FIGURE 7.  Comparison of the calculated equilibrium cross-section with (broken line) and with- 
out (thiok full line) corrections for flow separation. a,  is the ciroular cross-seotion obtained when 
u = O(W = 0). 

Thus the cross flow is seen to increase the wavelength of maximum instability and, 
through it, the size of droplets produced after the instability leads to break-up of the 
cylinder. 

Appendix. On the influence of flow separation on the cross-sectional shape 
A rough estimate of the influence of flow separation on the equilibrium shape can 

be obtained by the following modification of the solution in 9 3. 
Let 6, be the angle at which the gas flow separates. We assume that in the region 

0 < 6 < 0,, the gas flow is described by potential flow while in the region 6, < 6 < 7~ 
there is a uniform pressure, assumed to  be the pressure p ,  of the undisturbed gas flow 
far upstream of bhe liquid cylinder. 

I n  an identical manner to  3 (equation (8)) the equilibrium condition in the region 
0 < 0 < BS results in 

E-Po 
Wf,(6) = 1 -- - W (  1 + & cos 26) + A  cos6, 

Va0 

since there is no symmetry about 6 = +n in this case. 
I n  the region 0, < 0 < 7~ the equilibrium condition is 

or 

where r = a, describes the gas liquid interface in the region BS < 0 < T ,  (Because of 
the assumption of uniform gas pressure, a, is, of course, constant.) 

To obtain a continuous and smooth boundary, we impose the conditions: 

a(&.) =a,, ($) = 0. 
es 
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Combining (A 1)-(A 3) and ignoring the trivial solutions 8, = 0, n-, we obtain 
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Laminar separation from a solid cylinder occurs a t  approximately 8 = 0.6n-, so that 
8, should be in the region in- < 8, < n-. Thus we choose the negative solution of (A 4), 
resulting in 8, = +I- and 

(A 6) A = - -  ;w 
The gas pressure is discontinuous a t  8,. This inevitable discontinuity results from 

The value of E may be determined as before. Here the cross section S is given by 
the rather crude approximation involved in this modified solution. 

Substitution of (A l ) ,  (A 3) and (A 4) and integrat,ion leads to 

The equilibrium shape (A 6) for W = 0.3 appears in figure 7, together with the 
first-order shape a(l) obtained from (13), and a,,. It is seen that the flow separation 
causes only minor changes in section shape and fineness rat,io when compared with 
the distortion from the circular shape. 
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